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A B S T R A C T

Purpose
The knowledge of the key genomic events that are causal to cancer development and pro-
gression not only is invaluable for our understanding of cancer biology but also may have a
direct clinical impact. The task of deciphering a model of tumor progression by requiring that it
explains (or at least does not contradict) known clinical and molecular evidence can be very
demanding, particularly for cancers with complex patterns of clinical and molecular evidence.

Materials and Methods
We formalize the process of model inference and show how a progression model for
neuroblastoma (NB) can be inferred from genomic data. The core idea of our method is to
translate the model of clonal cancer evolution to mathematical testable rules of inheritance.
Seventy-eight NB samples in stages 1, 4S, and 4 were analyzed with array-based comparative
genomic hybridization.

Results
The pattern of recurrent genomic alterations in NB is strongly stage dependent and it is pos-
sible to identify traces of tumor progression in this type of data.

Conclusion
A tumor progression model for neuroblastoma is inferred, which is in agreement with clinical
evidence, explains part of the heterogeneity of the clinical behavior observed for NB, and is
compatible with existing empirical models of NB progression.

J Clin Oncol 23:7322-7331.

INTRODUCTION

Knudson’s two-hit model1 describes the
deactivation of both alleles of a tumor
suppressor gene as the initiating event of
oncogenesis. The subsequent progression
toward an aggressive malignancy is a multi-
step process with the reduction of the cell’s
dependence on growth signals as well as sup-
pression of apoptotic pathways as hallmarks.
The linear progression of colorectal cancer is
probably the best-characterized genetic
model of tumorigenesis2: the inactivation
of a gate-keeper gene,3 adenomatous pol-
yposis coli (APC), initiates colorectal
neoplasia and proceeds through the muta-
tion of oncogenes such as KRAS and

apoptosis-related genes such as TP53 to a
carcinoma.4 In general, one can assume
that the activity of several genes needs
to be changed in order to develop any can-
cer. The mutation process underlying these
changes is inherently random and undi-
rected. However, it seems unlikely that
the necessary alterations could happen si-
multaneously by chance alone, particularly
when more than a few genes need to be
mutated. This has led to the model of a
clonal evolution,5 which guides the random
mutation process by selection of alterations
providing a growth advantage.

In this article, we argue that the clonal
evolution process should leave characteris-
tic signatures of inheritance along the
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pathways of progression and present a method to infer
models of tumor progression by an identification of these
signatures in genome-wide data of mutations. One muta-
tional process that can be monitored is changes of DNA
copy number by high-resolution comparative genomic
hybridization (CGH). The distribution of copy-number
changes in a given cancer type is nonrandom, and changes
occur at recurrent locations.6 This suggests the presence of
tumor suppressors or oncogenes in lost or gained regions,
respectively. For a broad range of cancers, as well as for
subtypes of the same cancer, characteristic patterns of re-
current alterations have been observed.7 The direct impact
of DNA copy-number changes on gene transcript levels
was demonstrated by simultaneous measurements of
DNA copy numbers and mRNA levels.8,9 Consequently,
DNA copy-number changes contribute to the mRNA
expression profile and ultimately to the behavior of the
tumor cell.

Neuroblastoma (NB) is well known for its pro-
nounced clinical heterogeneity, and several studies10-13

indicate that the characteristic patterns of genomic alter-
ations correlate with the different phenotypic stages of the
disease. This makes NB well suited as a test set for the
methods presented here. NB is one of the most common
pediatric solid tumors and accounts for 7% to 10% of all
childhood cancers.14 The prognosis of patients with NB
varies according to the stage and MYCN amplification
status.14 Stage 1 disease is essentially curable, whereas
patients with stage 4 disease, in particular those with
MYCN amplification, remain largely incurable despite
advances in cancer therapeutics.14 Stage 4S tumors repre-
sent an enigmatic group of metastatic tumors with a small,
localized primary tumor. This type, which is associated
with an excellent prognosis and spontaneous regression
in the majority of the cases, has a unique pattern of dis-
semination primarily to the liver and skin in infants youn-
ger than 1 year. These diverse biologic behaviors, which
are often associated with particular genetic changes,
makes NB a paradigm for the investigation of genomic
alterations associated with progression models. Genomic
alterations in NB have been investigated by cytogenetic,
and molecular methods including spectral karyotyping
and metaphase CGH (M-CGH).11,13,15-18 On the basis
of these studies, several genomic alterations have been
reported to correlate with prognosis, including amplifica-
tion of the MYCN oncogene (found in 30% of NB),14,19

gains of 17q (� 50%) and loss of 1p36 (30% to
35%).14,20-22 Other recurrent changes including losses of
3p, 4p, 9p, 11q, and 14q, as well as frequent gain of chro-
mosome 7, have also been suggested to have relevance to
the development and progression of these tumors.22-25

Currently no gold-standard molecular model of
NB progression exists. The pronounced clinical heteroge-
neity of NB indicates a nonlinear progression, unlike the

development of colorectal cancer. The contrast between
the highly malignant and benign stages in NB is so extreme
that some authors have noted that the two groups of
tumors seem to reflect different diseases.26,27 Aneuploidy
was found to be an important prognostic marker for sur-
vival in children younger than approximately 18 months,28

but it loses its predictive power for older patients. More
recent reports have indicated that near ditetraploidy29 is
a factor that indicates poor prognosis in NB. The ploidy-
changing process is commonly considered as a distinctive
and early event in NB development,21,27,30-32 and hypothet-
ical models of NB development center around this process.
One popular model32 reflects the older distinction between
diploid and aneuploid tumors. It classifies NB into benign,
hyperdiploid variants with mitotic dysfunction and aggres-
sive variants characterized by gain of 17q. A more recent
speculative model27 incorporates the observation that tet-
raploidy is a strong marker for bad outcome and uses a hy-
pothesis by Kaneko and Knudson31 that suggested that all
levels of ploidy in NB result from the same molecular pro-
cess, namely a multipolar division of tetraploid cells. Here
we have utilized high-resolution genomic copy number
data generated from array-based CGH (aCGH) to infer
a model of the progression of neuroblastoma.

MATERIALS AND METHODS

Model Selection

The principle used to select the one tumor-progression
model compatible with genomic data from all possible tumor
progression models (applying the biologic assumptions outlined
in Results) is fairly straightforward: each theoretical model has
a one-to-one correspondence to occupation pattern of the com-
mon, shared (between two or more sets) and specific patterns of
mutations. Therefore it is sufficient to identify which sets are oc-
cupied and which sets are empty. Possible outcomes of such ex-
periments can diagrammatically be represented as occupations of
a Venn diagram (Fig 3). For two stages, such a diagram has three
distinct sets, one representing common alterations and two sets
representing alterations specific to A and B, respectively. Each set
can either be empty or occupied; therefore there are 23 Z 8 pos-
sible experimental outcomes. Of these, only three map to the pro-
gression models I and II in that figure. The remaining five
possible experimental outcomes are incompatible with an evolu-
tionary progression of the disease involving the observed geno-
mic alterations. For example an experiment that does not
detect any recurrent alterations at all (all sets empty), is in vio-
lation of rule 1 (presence of a progression signature) and rule 3
(signature of a common disease origin).

Mutations are typically not present in all tumors of a given
stage and they are also typically not exclusive to that stage.
However, the frequency of mutations is often significantly dif-
ferent in distinct stages. Consequently we use the frequency of
mutations as the primary observable. In what follows, we pres-
ent the rules to identify common, shared and specific muta-
tions specifically for DNA copy number changes. It should
not be difficult to perform similar calculations for other types
of mutations.

Neuroblastoma Progression Model
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We define a genomic alteration as common to all stages if
the alteration is recurrent for each stage individually. Recurrent
means that the frequency � of an alteration at genomic position
x is higher (� � �) than expected by random chance. A value
for the threshold � can be estimated by analyzing the null-
hypothesis, namely that the probabilityP(x)Z P for a mutation
at position x is independent of x and approximately constant for
the whole genome. The random process is binomial and the
probability to find � � n out of N samples with a genomic im-
balance is given by

The smallest � Z n/ N for which this P value is P (� $ n)
� � defines the threshold � for recurrent regions. The desired
significance level � needs to be adjusted for multiple compari-
sons. We use � Z .05/L y 2.5 � 10�6 where L y 20,000 is
the number of probed genomic locations. An estimate of the po-
sition independent probability P can be obtained from the data
set by counting the number I of genomic imbalances on the
whole genome in the N samples: P y I/(LN). In our NB data
set, we find empirically P y 0.07 and typically have N Z 20
for each phenotype. With equation 1, one finds for these param-
eters that a region can be called recurrent when an imbalance is
observed in more than 50% of the samples. An imbalance is de-
fined as common to all stages if the region is recurrent for each
stage individually and we use as the criterion

the definition of unique or shared alterations is based on signif-
icant differences in the frequency of imbalances in one (unique),
two, or three (shared) phenotypes as compared to the remaining
phenotypes. The term ‘‘significantly more frequent’’ can be an-
alyzed using the null hypothesis

The probability for a gain (or loss) at a location x does not de-
pend on the phenotype of the disease. Under this assumption,
the hypergeometric distribution can be used to estimate the
probability to observe more than na genomic imbalances in a
subset of Na samples, whereas nb out of the total Nb samples
in a different set:

An imbalance unique to stage A is defined by

the observed frequency in stage A is significantly higher than in
any other stage. Similarly,

a significantly higher frequency in both A and B compared with
all other phenotypes defines shared imbalances. The definition of

shared between two for four end points is given by equation 6
with the indices PB,A swapped (ie, a genomic change is much
less frequent in a stage A than in any other stage). In order to
understand the distribution of the composite values (equations
2, 5, and 6), which are a sum of non–independently distributed
terms, we simulated the distributions in a random permutation
test with 20,000 re-labelings providing an approximation of the
relevant distributions.

The thresholds �s, �u for shared and unique regions need to
be adjusted for multiple comparisons. Some care is needed at this
step, because type I errors caused by a too-large threshold may
cause an otherwise empty set to appear occupied, whereas
too-small thresholds (type II errors) may change the outcome
of the model selection by making an occupied set appear empty.
Therefore, instead of using, to a degree, arbitrary thresholds, we
probe a range of thresholds and compare the number of selected
locations with the number obtained in a random permutation
test. We define a set to be empty if in the whole range of thresh-
olds the number of selected locations never exceeds the number
found in the randompermutation test bymore than a few percent.

Data Analysis

Fluorescence ratios were normalized for each microarray by
setting the average log ratio for each subarray element equal to
zero (commonly referred to as pin normalization). The data
were quality-filtered by removing those clones that had poor qual-
itymeasurement44 (quality� 0.5) inmore than20%of all the sam-
ples. For the clones that passed this filter, the fluorescence ratio of
low-quality spots for the individual samples was replaced by the
average ratio value of the remaining good measurements for
that clone.Thecloneswere thenassigned toUniGeneclusters (Feb-
ruary 2005). For the UniGene clusters represented by multiple
clones, mean fluorescence ratios of those clones are used. After
these processes we had 17,692 unique UniGene clusters remaining
from the initial 42,591 clones. Map positions for the clusters were
assignedbyBlat searchesagainst theGoldenPathgenomeassembly
(http://genome.ucsc.edu/; May 2004 Freeze). Throughout this
article, all genomic coordinates are given with the respect to this
assembly. Finally, the clusters were sorted according to their start-
ing position of sequence on each individual chromosome.

Detection of Genomic Changes and

Frequency Estimation

Systematic errors make the detection of low-level DNA
copy-number changes with cDNA arrays difficult35 and may re-
duce the reliability45 of the data. We used topological statistics35

to reduce systematic errors and obtain P values for the presence
of gains and losses in individual samples. This algorithm is a gen-
eralization of the sliding-window smoothing filter that uses data
from self-self hybridization to reduce systematic errors in cDNA
aCGH data. It calculates, for each sample and each chromosomal
position, a P value for the presence of a gain or a loss, respec-
tively. To deal with the limited sensitivity of cDNA microarrays
and to reduce type II (false-negative) statistical errors, we esti-
mate the frequency of genomic alterations35 from the average
P value denoted as p̄ within S1, S4S, S4–, and S4�. This value
is proportional to the frequency

of their occurrence, where Nw is the number of samples in a sub-
group with a given genomic imbalance and Nt is the overall
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number of samples in that subgroup. This is valid as follows: For
all loci in which there are no genomic imbalances, the observed
P value Pgc will follow the flat theoretical distribution with
a mean (expectation value) 〈Pgc Z 0.5〉. When one is sure of a
genomic imbalance, Pgc is close to zero (for example Pgc
� .001). With these considerations one can write

that is, the lower P, the higher the frequency of a genomic change
in that locus.

Tumors

The data used in this study include and extend data pub-
lished earlier and we refer to Chen, Bilke, and Wei13 for details
left out here to save space, including the technical details about
the microarray experiments. Seventy-eight snap frozen NB speci-
mens were obtained from 20 patients with S1, 15 S4S samples
without and two with MYCN amplification, and 39 patients
with stage 4, of which 18 were MYCN-amplified S4� and 21
were MYCN single-copy S4- tumors. The original histologic di-
agnoses were made at tertiary hospitals with extensive experience
in diagnosis and management of NB.

RESULTS

PCA Visualization of Genomic Alterations in

NB of Different Stages

In this study we focused our analysis on NB tumors of
stages 1(S1), 4S (S4S), 4 without MYCN amplification
(S4–) and 4 with MYCN amplification (S4�). To demon-
strate the stage dependence of DNA copy-number changes
in NB, we selected measurements indicating differential
DNA copy-number levels (P � .01) with a one-way
ANOVA33 (Analysis of Variance) analysis. Next we used
principal component analysis34 to visualize the data for
these clones (Fig 1). A moderate separation between the
different stages of NB is evident in the copy-number pro-
files projected on the second and third principal com-
ponent. Although S4–, S4�, and S1 � S4S form three
well-defined, separate clusters, we cannot discriminate be-
tween S1 and S4S with this simple analysis. Interestingly,
the aberration patterns for the two MYCN-amplified S4S
tumors appear to be closer to S4� than to the non–MYCN
amplified tumors in the same stage. The much more ag-
gressive phenotype and the observed altered expression
profiles of the MYCN-amplified S4S tumors suggest that
they form a distinct biologic subgroup. However, the
only two samples available in this study did not suffice
to draw statistically significant conclusions. The two sam-
ples were therefore excluded from the subsequent analysis.

Frequency of Genomic Alterations in NB

of Different Stages

Next we used topological statistics35 on the complete
data set to obtain P values for the presence of DNA copy-

number changes for each tumor. On average, each NB
tumor in our analysis gained or lost (with P � .001) ap-
proximately 7.5% of the genome. One can expect that the
majority of changes present in only one tumor (or a small
number of tumors) do not carry a high level of biologic
significance. Of interest are recurrent genomic alterations
occurring with a higher frequency than expected by
chance. One way to estimate the frequency of genomic
alterations from noisy data is to calculate the average P
value p for copy-number changes (see Methods section
and Bilke et al35). The result of this analysis for the four
stages of NB is depicted in Figure 2. Interestingly our high-
resolution analysis indicated that a small region extending
from 118 to 119 Mbp on 11q is lost in all S4– and a large
fraction of S1 and S4S tumors. Proximal to this region
a larger loss of heterozygosity (LOH) extending over
20MBp was observed most frequently for S4– tumors.
A gain in another small region on 2p23 (31 to 33 Mbp)
was identified for all S4S and most S1 tumors. We also
confirm that gains on chromosome 17 are mostly limited
to 17q for S4– and S4�, whereas in S1 and S4S, gains of
the whole chromosome 17 are frequent.

Inferring a Tumor Progression Model of NB

for Four Stages

We next utilized the frequency of genomic alterations
for each of the four subgroups to determine the best fitting
model of genetic evolution for NB. The inference proce-
dure is built around the three following widely accepted
principles of genetic evolution: (1) All changes found in
a parent genotype must be present in the offspring

PC
3

-2

-1

0

1

2

-2

Stage 1
Stage 4s
Stage 4, MYCN-
Stage 4, MYCN+

-1 0 1 2

PC2
-3

Fig 1. Principal component analysis of the DNA copy-number data indicating
differential copy numbers (P � .01) between stages 1, 4–, 4�, and 4S in a
one-way Analysis of Variance analysis. Each point represents one patient,
the coordinates were calculated by projecting the DNA alteration pattern on
the second (PC2) and third (PC3) principal component. With these
coordinates a separation of the different stages, with the exception of
stages 1 and 4S, becomes visible. The two S4S samples within the S4�
samples were the only two MYCN-amplified samples. These two samples
were then removed in the subsequent analysis.

p̄z
ð0:5 3 Nno changeÞ1 ð0 3 NwÞ

Nt

Zð12yÞ 3 0:5; (8)
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occurring with a similar frequency. The daughter genera-
tion acquires additional genomic imbalances. (2) Unob-
served intermediate genotypes are possible, but the
model with the smallest number of genotypes (observed
� unobserved) is utilized (Occam’s Razor36). (3) All tu-
mor stages belonging to the same diagnostic group arise
from a common ancestor (ie, the phylogeny has a root).

The first rule, the signature of inheritance, is the ma-
jor key for model inference: Progression from one stage
to a later stage manifests itself by a set of shared muta-
tions present in both the parent and the offspring, plus
changes specific to the offspring generation. To see
how this can be used to identify models of tumor pro-
gression from genomic data, consider as an example
the situation with only two stages, A and B (Fig 3).
Only two distinct progression models compatible with
the above rules are possible in this case: (I) linear pro-
gression from A to B (and, of course, the inverse B to

A, which is not counted as a distinct model because it
is a mere re-labeling of stages) and (II) a progression
from a common ancestor denoted C in Figure 3. Rule
1 predicts different patterns of genomic alterations for
the two distinct models. In model I, all recurrent changes
in A are present also in B and thus the changes in B are
a true super-set of those in A. In model II, both A and B
have recurrent alterations specific for each type but also
alterations common to both types. In the latter case the
common changes are associated with an unobserved stage
C by rule 2. A hypothetical experiment designed to dis-
criminate between the two models would need to identify
whether both stages A and B have genomic alterations
specific to the two stages.

For more than two stages, the basic principle of model
inference remains the same: Each of the possible tumor
progression models generates a unique distinct pattern
of common, shared (between two or more stages) and
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Fig 2. The average P value p̄ for
gains and losses detected by CGH
analysis for neuroblastoma is
proportional to the frequency of
genomic alterations (Eq.9). Lower p̄
indicates higher frequencies (ie,
more samples show significant
[small] P values). The presence of
a gain or loss in all samples is
indicated by a very low p̄. With the
number of tumors used in this study
it is safe to use log10(p̄) # –2 as an
indication of an alteration present in
all samples. Chromosomal positions
are indicated on the top and the
bottom of the diagram. The position
of the centromere is indicated by the
small line within each chromosome.
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unique genomic alteration. The number of progression
models grows quickly with the number N of stages and
the number S of distinct sets in the (abstract) Venn dia-
gram is given by

generating 2S possible experimental outcomes. The num-
ber of topologically distinct models compatible with
evolutionary progression is smaller because of symme-
tries and experimental outcomes incompatible with
evolutionary progression.

For the fourNB stages the (abstract) Venn diagram has
14distinct sets: four specific to each type, six sharedbetween
two stages, three shared between three stages and one set
containing common alterations. In order to test whether
these sets are occupied or empty in our NB data set, we
used the statistical model described in the Materials and
Methods section. In brief, P values were calculated for
eachclonetobeamemberofoneof the14setswitha random
permutation test. If the observed number of clones with
P�� inoneof the14 setswas found tobeconsiderably larger
than what one would expect by chance, the respective set
wasdefinedoccupied. Inorder to avoid a strongdependence
on the choice of the threshold �, we repeated this step for
various � (Fig 4). We found that S4–, S4S, and S4� have
unique alterations, while alterations specific for S1 were
not found (Fig 4A). Besides the specific alterations and
the changes common to all tumors, S4� had no further
alterations in common with any of the other stages. At the
same time, S1, S4–, and S4S had common alterations not
present in S4� (Fig 4C). This allows us to conclude that
S4� resides in a separate branch of the NB progression
model. The alterations in S4S were found to be a true
super-set of the S1 alterations (Figs 4A and 4B), which

allows one to conclude that S4S progresses from S1. Some
of the alterations common to S1 and S4S were absent in
S4–, which had its own specific changes. This allows one
to conclude that S4– is an independent sub-branch of the
group S1, S4–, and S4S. Figure 5 summarizes these findings
and depicts the final inferred model of tumor progression
in NB. A list of the major genomic regions and their geno-
mic positions appears in Table 1.

DISCUSSION

In this article, we have presented an unbiased approach to
learn models of tumor progression from genomic data.
Here we have used DNA copy-number data in 76 NB sam-
ples to infer a progression model involving S1, S4S, and 4
with and without MYCN amplification. The key to our
analysis that translated the flat data to a rich biologic
model was the integration of the concept of clonal evolu-
tion of cancer in the data analysis. This permitted the use
of the biologic principles of inheritance to establish a link
between possible theoretical tumor progression models
and the experimental observation whether recurrent geno-
mic alterations were specific to, shared between a few, or
common to all subtypes of a specific cancer. This is anal-
ogous to the analysis of the phylogeny of species, similarity
of features (here, mutations) in different cancer species
(phenotypes) were used to establish inheritance (progres-
sion). One important difference, though, is that individual
cancer specimens are in fact part of different evolutionary
processes: Each tumor has developed independently in
each patient. The justification to nonetheless apply the
concept of inheritance is (1) that the individual evolution-
ary processes start from an identical (or at least similar)
population of normal cells and (2) that recurrent genomic
alterations exist. The latter fact indicates that very similar
selective forces act in the individual processes of clonal
evolution and it is exactly these selective forces (mutation
of gene X provides growth advantage) that defines a model
of tumor progression.

Clonal evolution is an inherently random process, of-
ten with multiple alternative mutations affecting the same
intracellular pathway. For example, in colorectal cancer,
one of the best-studied systems, the APC gene was found
to be mutated in 85% of the cases, whereas in half of the
remaining specimens, �-catenin, a downstream target of
APC in the same pathway, is mutated.4,37 This inherent
biologic variability needs to be incorporated in the analysis
of tumor progression for any cancer. Consequently we
used a probabilistic language; the analysis of the frequency,
or probability, of genomic alterations allowed us to iden-
tify the dominant pathways of genomic alterations. To
define frequencies in a sensible way, it was necessary to
categorize the cancers into classes. We used staging and
MYCN status for this purpose. A discovery of subclassifi-
cations from the data is therefore not possible with our

A

B A B

A

C

B

Fig 3. The two-tumor progression models for two observed phenotypes
compatible with the assumption of an evolutionary progression. Arrows
indicate accumulation of mutations, nodes observed, and unobserved
phenotypes, respectively. Each of the progression models generates a unique
pattern of mutations present in one or both phenotypes. Diagrammatically the
distinct configurations can be depicted by the Venn diagrams shown on the
right part of the diagram.

SZ +
N

nZ1

N!

ðN2nÞ!n! (9)
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Fig 4. Illustrates of the method used to identify recurrent genomic alterations that are unique or shared between two or three out of the four phenotypes. Only if
the observed number of such regions is larger than the expected by the false discovery rate (FDR), the corresponding subset in the Venn diagram is said to be
occupied. Shown is the ratio R (observed/expected by FDR) for several P value thresholds �. A ratio R considerably larger than one for any � indicates that
a particular set is occupied: (A) recurrent regions unique to a stage; (B) regions shared between two stages; and (C) regions shared between three stages.
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method. Unsupervised methods such as those presented
in Desper, Jiang, and Kallioniemi38 and von Heydebreck,
Gunawan, and Fuzesi39 are better suited for this purpose;
however, typically they require a much larger data set in
order to get robust results.

We found pronounced, distinct patterns of genomic al-
terations associated with different stages of NB. Our analysis
confirmed many of the known regions as well as their asso-
ciation with the different NB stages. Loss of 1p36, for exam-
ple, has been associated20 with advanced stages and most
frequently occurs together with MYCN amplification. We
found that loss of 11q is inversely correlated with MYCN
amplification in agreement with various studies (eg, Guo
et al10 and Plantaz et al11). Also, the losses on 3p, 4p, and
14q were found earlier to be correlated with the loss of 11q
and exclusively in tumors without MYCN amplification.12

The loss on 4p16, which we found frequently in S1, S4S,
andS4-tumors,maydeserve special attention.Several studies
suggested the presence of a tumor-suppressor gene.23,25 A
weak linkage of LOH on 4p16 to familial NB predisposition
has been described,23 and Phox2b located close by on 4p15
has been identified as a marker for neuroblastoma.40

The observed association of recurrent DNA copy
number changes with the different stages of NB allowed
us to map these data to identify the one tumor pro-
gression model that summarizes our data (Fig 5). In
this diagram, nodes represent the different phenotypes
(S1, S4S, S4–, and S4�) and two intermediate, unobserved
stages denoted A and B. Arrows represent accumulation of
genomic alterations. They do not necessarily imply a spe-
cific temporal order of events. Technically we cannot draw
a conclusion on a specific sequence of events from our
data, and the represented graph should therefore be inter-
preted as a decision tree. Biologically, it nevertheless seems
reasonable that the shared genomic alterations represented
by the intermediate, unobserved stages tend to occur early
in NB progression. An interesting speculation is that the
first node represents the genomic changes found in the
neuroblastic modules, which resemble NB in situ that
commonly occurs in infants younger than 3 months
who die of other causes.41 Unless additional hits like
MYCN amplification and loss of 1p36 occur, these in
situ genomic alterations would ordinarily result in apopto-
sis during normal development, explaining why these phe-
notypes are not observed. It is encouraging to note that the
inferred model predicts clinical as well as pathologic fea-
tures of NB, even though it was solely derived from mo-
lecular data. With the exception of S1, all phenotypes in
this study are end points of the progression model. This
implies that a fully developed NB clone does not progress
to a more aggressive tumor. This prediction is in very good
agreement with clinical evidence, where it was found that
NB rarely, if ever42 progresses to a more aggressive tumor.
Our model is thus in agreement with a hypothesis sug-
gested by several authors27,31 that the aggressive stages
of NB (stage 4 with and without MYCN amplification)
are created as advanced stages. The markedly different be-
havior of the favorable-prognosis, benign, metastatic S4S
disease compared with the other metastatic variants of
stage four NB is partially explained by the predicted
model: The S4S disease is not a variant of the other met-
astatic stages but rather progresses from the benign S1 dis-
ease. This prediction of our model supports the hypothesis
that NB consists of at least two distinct clinical-biologic
types.26 Of note is also that the pathologic description
of stage S4S as a localized primary tumor (as defined
for stage 1, 2A or 2B) with limited dissemination seems
to be a possible consequence predicted by our model.
The dominant pattern of ploidy in NB28 with near triploid
clones predominantly in less aggressive tumors and

+: 17q21-25 +: 7p,q
 -: 3p21, 4p16, 11q23, 14q

+: 2p23, 17p
 -: 11q13

+: 2p25-24
 -: 1p36

+: 2p, 2q24
 -: 11p11

-: 11q21-23

1 4S4+

A B 4-

Fig 5. Graphical representation of the inferred tumor progression model for
neuroblastoma. Stage 1, 4S, 4–, and 4� and two intermediate stages A and
B are depicted as circles. Arrows indicate accumulation of mutations. Major
affected regions are shown in the figure where a � sign indicates gain and –
sign loss of DNA material.

Table 1. Major Regions Found to Be Associated to One of the
14 Distinct Sets of the Venn Diagram for the Four Stages in NB

Type Classification Cytoband Start End

LOH Specific 4� 1p36 4 12
LOH Specific 4� 1p36-1p34 20 40
GAIN Specific 4� 2p25 11 21
LOH Specific 4– 11q21-11q23 92 117
GAIN Specific 4S 2p22 33 37
GAIN Specific 4S 2p21 45 48
GAIN Specific 4S 2q24 151 154
LOH Specific 4S 11p11 45 48
GAIN Shared S1, S4S 2p23 31 33
GAIN Shared S1, S4S 17p13 3 11
GAIN Shared S1, S4S 17p11 26 29
LOH Shared S1, S4S 11q13 65 67
GAIN All but 4� 7p22-14 5 37
GAIN All but 4� 7p11-q11 54 65
GAIN All but 4� 7q21-q31 77 123
GAIN All but 4� 7q34-ter 138 158
LOH All but 4� 3p21 39 50
LOH All but 4� 4p16 0 7
LOH All but 4� 11q23 117 121
LOH All but 4� 14q11 19 24
LOH All but 4� 14q24-33 75 102
GAIN Common 17q21-25 32 77

NOTE. Shown here are regions with P � 0.001 covering at least 10
sequential clones on the DNA array. Start and end positions are given in
Megabase with respect to the p-terminus.
Abbreviations: NB, neuroblastoma; LOH, loss of heterozygosity.
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diploid tumors in more aggressive stages is reflected in this
model: the dominantly triploid stages S1 and S4S appear in
a common branch of the model, even though we did not
explicitly incorporate ploidy information.

As mentioned in the Introduction, ploidy is consid-
ered to play a prominent role in NB biology and therefore
deserves some more attention. In principle the ploidy in-
formation can be treated in the same way as the DNA
copy-number information by classifying it as common
or specific for the different tumor stages. Unfortunately,
CGH techniques do not allow inference of ploidy and
we did not have available the ploidy data for all of our
tumors to formally use it in the model-building process.
Nevertheless, it is interesting to see that the inferred model
is compatible with the empirical models built around
ploidy by using their implicit ploidy pattern. One popular
variant32 essentially classifies NB in aneuploid lower-stage
tumors with overexpressed TrkA and aggressive diploid
tumors with overexpressed TrkB. In this case, aneuploidy
is shared by S1 and S4S, and thus ploidy change would oc-
cur at node S1. Another, more recent speculative model27

describes ploidy instability as an event common to all
tumors. This would lead to the conclusion that ploidy
change happens in the first intermediate stage A. A third
speculative alternative is that ploidy change occurs at the
intermediate stage B. This situation would generate the
testable hypothesis that tetraploid tumor cells are signifi-
cantly more frequent in S4– tumors without MYCN com-
pared with S4� with MYCN amplification.

DNA copy-number changes alone cover only a frac-
tion of possibilities for cancer cells to acquire mutations.
Few-nucleotide mutations or aberrant patterns of pro-
moter methylation are technically more difficult to
monitor but are an important pathways of mutation.
The probabilistic analysis presented in this article can in
principle be used for these more subtle mutations. How-
ever, currently no sufficiently high-throughput method is
available to actually identify these mutations on a genome-
wide scale. One example in which DNA copy-number data
alone are not sufficient to infer a tumor progression model
is colorectal cancer. In this case, no association between
the stage of the tumor and a particular pattern of gains
and losses could be identified.43 An important question
is how progression models would change when new
information becomes available. As with any model, new
information may make changes necessary. However, this
new information would not invalidate currently identified

shared alterations and rather add additional shared or
unique alterations. Additional data would consequently
leave the basic structure of the model unchanged and at
most induce additional arrows or unobserved phenotypes.

In summary, we have described and tested a method
that formalizes the inference of models of tumor progres-
sion from genomic data. The task to develop such models
intuitively gets increasingly complex with an increased
amount of information available and with a certain level
of complexity a formalized method for model inference
may become a necessity. We have tested our method on
DNA copy number data for neuroblastoma, but it is lim-
ited neither to cytogenetic data nor to this specific cancer
type. The inherent platform independence allows one to
integrate existing epidemiologic data in larger studies.
This will be useful in the next step in our analysis of
the NB progression model to include the intermediate
clinical stages left out in this study. Here we had limited
our analysis to the least and most aggressive stages of
neuroblastoma, expecting that genotypic differences
between these types would be most pronounced. We con-
clude that our progression model inferred from genomic
data is compatible with currently proposed progression
models centered around ploidy changes. The model
reflects the heterogeneity of clinical behavior found in dif-
ferent NB stages. Our genomic data did not support a
linear model of tumor progression from the least to
most aggressive phenotypes except for S4S tumor for
which we speculate an evolution or progression from S1
tumors. Additionally we believe the identified common,
shared, and unique regions will harbor genes that will
help to get important clues as to the causal reasons for
tumor phenotype and progression.

- - -
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